Deep Learning Classification Node ====================================== Overview -------------------- The **DL Classification Node** offers state-of-the-art classification using pre-trained models. Deep learning classification can be performed on any point cloud or image. .. image:: Images/dl_classify/dl_classify_overview_1.png :align: center .. image:: Images/dl_classify/dl_classify_overview_2.png :align: center | Input and Output -------------------- +----------------------------------------+-------------------------------+-----------------------------------------------------------------------------------------------+ | Input | Type | Description | +========================================+===============================+===============================================================================================+ | Data Input | Image / Point Cloud | The RGB image / point cloud used for classification (Camera, Reader, DL Segment etc.). | +----------------------------------------+-------------------------------+-----------------------------------------------------------------------------------------------+ | Use GPU Model | Bool | Use the GPU Model when true. | +----------------------------------------+-------------------------------+-----------------------------------------------------------------------------------------------+ | Config File Path | String | The path to deep learning config file. | +----------------------------------------+-------------------------------+-----------------------------------------------------------------------------------------------+ +-------------------------+-------------------+------------------------------------------------------------------------+ | Output | Type | Description | +=========================+===================+========================================================================+ | classLabel | int | The class label for the most confident prediction. | +-------------------------+-------------------+------------------------------------------------------------------------+ | confidence | double | The score for the most confident class from 0 to 1. | +-------------------------+-------------------+------------------------------------------------------------------------+ | Node Settings -------------------- Data Source ~~~~~~~~~~~ .. image:: Images/dl_classify/dl_classify_node_settings_data_source.png :align: center - **Data Input**: The input scene to generate the prediction from. - For RGBD, use point cloud. - For RGB, use image or point cloud. - For DEPTH, use depth image or point cloud. **Classification Settings** ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. image:: Images/dl_classify/dl_classify_node_settings_classification_settings.png :align: center Please refer to `the Deep Learning page `_ for instructions on collecting dataset and training a model. - **Use GPU Model** (Default: false): Use the GPU Model when true. - **Config File Path**: The file path for the .txt deep learning config file. | Procedure to Use -------------------- 1. Insert Camera, and DL Classify node. .. image:: Images/dl_classify/dl_classify_procedure_1.png :scale: 80% 2. Put the classification model files into the project's Data file. You can use the data `here `_ . .. image:: Images/dl_classify/dl_classify_procedure_2.png :scale: 80% 3. Set up the Camera node. Please refer to :ref:`Camera Node` for more instructions on creating a virtual camera. .. image:: Images/dl_classify/dl_classify_procedure_3.png :scale: 80% 4. Click the DL Classify node. Link the Camera output and select the config file. .. image:: Images/dl_classify/dl_classify_procedure_4_1.png :scale: 98% .. image:: Images/dl_classify/dl_classify_procedure_4_2.png :scale: 61% 5. Run the two nodes. You can see the predicted class and probability from the label. .. image:: Images/dl_classify/dl_classify_procedure_5.png :scale: 90%